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An automatic procedure for X-ray line profile Fourier analysis is described. The Fourier 
coefficients were computed by the Stokes method and the real parts were used as input 
data to the Warren-Averbach method, which separates the line broadening due to particle 
size from that due to microstrains and/or to stacking faults. With the present system all 
calculations and plots are performed by an appropriately coded minicomputer on-line 
interfaced with a linear X-ray diffractometer. This system was tested in two different ap- 
plications. Cu filings (cold-worked) that give two first and second-order diffraction lines, 
and CdS thin films, prepared by sputtering, which give a single measurable reflection. In 
this case the Warren-Averbach method was partly modified. The particle size, 
microstrains and stacking fault probabilities were determined and the results are discussed. 

1. Introduction 
The present paper describes an automatic pro- 
cedure for X-ray line profile Fourier analysis. The 
Fourier coefficients were computed by the Stokes 
method [1 ]. The real parts were used as input data 
to the Warren-Averbach method [2 ,3] .  This 
method was partly modified to deal with strongly 
oriented and/or poorly crystallized samples giving 
one measurable peak only [4, 5]. 

It is known that whenever two or more dif- 
fraction peaks of the same h k l plane set are 
present, particle size and lattice disorder effects 
can be separated. From several review papers it 
appears that diffraction intensity data can be 
transferred to a computer and processed off-line. 
Moreover, at certain steps, graphs are needed to 
evaluate results. To our knowledge the R. J. de- 
Angelis and C. P. Gazzara computer programs are 
the most complete ones published at this time 
[6, 7]. With the present system, all the calcu- 
lations are carried out by an appropriately coded 
Olivetti P 6060. The minicomputer is interfaced 
both to the step motor and to the timer-scaler of 
the X-ray powder diffractometer. The computer 
routine includes the following steps: 

(a) Lorentz and polarization factors (optional) 
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(b) Background subtraction 
(c) Rachinger K a  I --0t 2 doublet separation and 

peak baricentre determination [8]. 
(d) Stokes correction and calculation of the real 

Fourier coefficients A (L) of the de-smeared line 
profile. 

(e) Plot of lnA (L) versus h2o, where h l  is equal 
to (h 2 + k 2 + l 2) in the case of cubic lattices, and 
h, k, l are Lane indices of the line under examin- 
ation. Plot of APr (L) versus L, pertinent to par- 
ticle size and fault broadening effects. 

(f) Calculation of the r.m.s, microstrain as 
(e~) 1/2 as function of the depth L (h) in the real 
space. 

The coherent diffracting domain size and 
stacking fault probabilities cannot be computed 
automatically due to the presence of the so-called 
"hook effect" [9]. However, these figures may be 
easily computed using parameters obtained from 
the A PF (L) versus L plots. 

This system has been thoroughly tested in two 
different applications: Cu Filings (cold-worked) 
that give two first and second-order diffraction 
lines, and CdS thin Fdms, prepared by sputtering, 
which very often are strongly oriented and give a 
single measurable line. The results obtained in the 
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first case agree well with the values previously 
reported by other workers. A test on the same 
samples was carried out by comparing results 
obtained by the present method with those ob- 
tained by means of a non-automatic traditional 
processing of experimental data, in which graphs 
are used from the very beginning. 

2. Theory  
If h a (20) is a measured peak profile, the Kal line 
is resolved by applying the Rachinger relation: 

h~(20) = ha, (20) + 1/2 ha, (20 -- A20a, _a~) 

(1) 

where A20a, _&, is the angular doublet separation 
and 20 is the Bragg angle. The ha~ (20) or h ~  (s) 
peak, where s is equal to 2 sin 0/X and X is the 
wavelength of the radiation, is broadened by in- 
strumental factors. The instrument function is 
taken into account by considering the gq, (s) 
peak, produced by a well-annealed sample. The 
true line profile, fa~ (s), is given, according to 
Stokes, by 

h~, (s) = f +i *fa, (s)g~, (s --s*) ds* (2) 

Stokes has shown that the Fourier coefficients 
F(L) of the true line profile are given by 

(3) F ( t )  - A (L) - a ( L )  

where H(L) and G (L) are the Fourier coefficients 
of the ha~ (s) and ga~ (s) respectively. In this way 
fa, (s) is given by: 

+ ~  

fa, [A(t) cos 2 .r(s  

+ B(L) sin 2nL (s -- So)] (4) 

If the baricentre So of the peak is chosen as origin 
of the Fourier analysis, and the line is nearly 
symmetrical, the real coefficients A (L) are nearly 
equal to IF(L) I and B (L) are nearly zero. 

Warren and Averbach have shown that for 
small L values, each A (L) coefficient can be ex- 
pressed as: 

A ( t )  = APF (L)"A~(L) (5) 

where APr (L) depends on particle size and faults 
and A e (L) depends on microstrains. For AeF (L) 
and A e (L) we have the following relationships for 
small L values and cubic lattices: 
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APF(L) = 1 1 (6) 
Daf  (h k l) 

27r 2 L 2 (e2)hkth~ 
Ae(L) = 1 a2 

2 z L 2 ,e2, h 2 
- -  7T ~ L l h k l  0 

exp aZ (7) 

where a is the lattice parameter, Def f (h k/) is the 
effective crystallite size along the direction per- 
pendicular to the (hkl) planes, (e~)hkt is the 
average "microstrain" along the [h kl] direction. 

Equatio n 7 is not only valid for cubic lattices, 
in which case a is the unit cell edge and h~ = h 2 + 
k 2 + l ~ , but also, for example, for 0 01 reflections 
of hexagonal lattices, in which case h0 = l and 
a = doo i ; 1/Deff(h kl) can also be written as: 

1 1 (1 .Sa +/3)Vhkl 
- -  _ _  -I- 

Deff (h k/) D(h kl) a 
(8) 

where ffJ (t7 k l) is the "true" average length of the 
diffracting coherent domains along the [h kl] di- 
rection, a and fl are two different probabilities of 
faults (a = deformation,/3 = twin faults). Vhm are 
coefficients that for fc c lattices are defined by: 

Vhkt =.,~ ILol (9) 
b ho (u+b)  

where Lo = h + k + l; b is the number of reflection 
components affected by stacking faults (Lo = 
3 N-+ 1 with N integral) and u is the number of 
the reflection components not affected by 
stacking faults (Lo = 3N). As can be seen from 
Equations 6, 7 and 8, the coefficients A (L) 
depend on the diffraction order h0. The separation 
of particle size broadening from other broadening 
effects is based on this. Substituting from Equation 
6 and 7 into Equation 5, the following relation is 
obtained: 

lnA(L) = lnAPF(L) 2 2 2 h2  o (10) - -  21r L <eL)" a 2  

From the plot of lnA (L) versus hl for different L 
values, it is possible to obtain lnA (L) at h~ = 0, 
i.e. the APF (L) coefficients. 

From the slope of the curve A PF (L) versus L, 
we obtain the effective average diameters: 

(dAeV(L)~ _ (11) 1 

d L  ] L = O  Def f(h kl) 

From the Vhkt values given by Equation 9 it is 



easy to see that the contribution of stacking faults 
to 1 /Da~(hk l  ) is 4/X/3 = 2.31 times greater for 
the reflection (2 0 0) than for the reflection (1 1 1). 

All the forementioned theory is based on the 
presence of at least two lines of the same h k l  set. 
To apply Equation 10 we need at least two h~ 
values. When one line only is present, Charlson 

H i g h l y  stabilized 
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Figure 1 Hardware scheme employed. 
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et al. [4] have shown that for small L values, the 
following expression can be used: 

L C 2 (e~)L 3 
A ( L )  = 1 C2(e~)L 2 q 

Deft Deft 

(12) 
where 

C2 _ 27r 2hg 
a 2 

This expression can be deduced by substituting 
Equations 6 and 7 into Equation 5. By means of a 
third order least squares fit, Detf and (eL) can be 
determined separately. 

In order to avoid the "hook" effect, we have 
used only the coefficients defined by L values 
between 0.1 x Det f (min) and Def f (min), where 
Deff (rain) is derived from the A (L) versus L plots: 

- ~---d-~] r=0 Deee (min) 

In this way we do not take into account the micro- 
strain effects, and therefore the calculated 
parameters have to be considered as the minimum 
effective crystallite sizes. Another important point 

,,r ,rip (]) 

I reference pezk 1 ~' braadened peak 2 ~ reference peak 2 '~ bro/deled peak s m m  , / ~  

fi~gure 2 Flow-chart of the computer programs employed, 
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in this single peak analysis is that stacking faults 
(when present) cannot be separated from crystal- 
1Re size broadening effects. Therefore only the 
"effective" and not the true crystallite size can be 
determined. 

Equation 5 can be written as: 

APF (L) = A (L) exp {(7 2 (e•)L 2 } (13) 

This is going back to the Warren-Averbach 
method; the Deff value computed from the re- 
ciprocal of the slope of the curve A PF (L) versus L, 
for small L values, should be in close agreement 
with the value computed by least squares fit. This 
method gives the best results only when L values 
are allowed to vary slightly to reach the best 
agreement with the Deff computed from the A (L) 
versus L curve. L limits must be inside the 
previously defined interval. 

3. Data collection and processing 
A Philips powder diffractometer equipped with 
Soller slits, pulse height discrimination and solid 
state scintillation counter was used with Ni-filtered 
CuKa radiation. Intensities were automatically 
collected by step-scanning and fixed counts 
techniques. Standard conditions were 40000 
counts and a step of 0.02 ~ . At 0 ~<60 ~ this is 

A A Reference sample 

B . . . . .  B Room temp. cold-worked 
sample 

C ...... C Sample cold-worked a t - 1 8 0  ~ 

m 

t 

/ ', 
~ C 'C~ ~ 

\ ' x  

i 

4'2 43 44 2 8 

Figure 3 Relative intensity of the (1 1 1) Kcq peak profile 
for the three Cu samples examined after Rachinger separ- 
ation. 
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equivalent to working with A20=cons tan t .  
However, provision was made to convert data from 
A20 to As = constant by means of a short sub- 
routine. 

With the present hardware system the data pro- 
cessing is made more accurate and faster, taking 
into account dead time due to data transferring. 
New programs, linked in a chain mode, were 
written in "BASIC" for the Olivetti P6060 
machine. The hardware scheme is shown in Fig. 1, 
while Fig. 2 shows the flow-chart of the whole 
program. At different steps it is possible to 
produce diagrams and graphs, aiding evaluation of 
the process. The single peak analysis was also 
performed automatically, inserting a suitable sub- 
routine (least squares) according to the given 

theoretical outline. 
Diagrams for comparison with the automatic 

method were recorded at 1/8 ~ min -1 . After back- 
ground subtraction, intensities were deduced 
graphically. These data were transferred to a com- 
puter, coded with the already published programs. 

4. Sample preparation 
Cold-worked Cu was obtained by filing an electro- 
lytically pure copper block, at both room tempera- 
ture and liquid nitrogen temperature ( - 1 8 0  ~ C). 
As a reference sample we used a Cu powder, an- 
nealed in a hydrogen atmosphere at 450 ~ C for 8 h. 
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Figure 4 A (L) versus L plot of the (1 l 1) peak for the 
cold-worked Cu samples. 



TABLE I Effective particle sizes along the two crystallographic directions [11 1] and [1 00]  for both Cu filings 

Metal Deformation Measurement Dell(1 1 1) Dell(1 00)  Dell(1 1 1) Deff(1 1 1) Reference 1.5a +/3 
(ReD 

temperature temperature (A) (A) Deft(1 00) Dell(1 00) 

Cu Room Room 170 85 2.00 2.00 [10] 0.044 
Cu - 180 ~ C Room 140 69 2.03 - 0.055 

For all three powders, the fraction with particles 
sizes less than 40 pm was used. CdS thin fihns were 
deposited by sputtering on a glass substrate 
starting from a pre-sintered powder of reagent 
grade. One sample was annealed 1 h at 500 ~ C in 
an inert atmosphere, in order to compare its 
microstructural properties with those of the non- 
treated thin film. A CdS powder of reagent grade 
was chosen as a reference sample with a large 
enough particle size. CdS crystallizes in the P63 mc 
space group with a = 4.136 A and c = 6.713 A. 

5. Results and discussion 
Fig. 3 shows three Kcq line profiles produced by 
the plotter, after Rachinger separation, for the 
(1 1 1) reflection. Curve A refers to the non- 
deformed reference Cu powder; B refers to the Cu, 
cold-worked at room temperature; and C refers to 
the Cu, cold-worked at liquid nitrogen tempera- 
ture. The corresponding A (L) versus L curves are 
shown in Fig. 4. Fig. 5 shows the non-normalized 
In A(L) versus h~ at different L values for the 
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Figure 5 Ln [1000 A (L)] asafunc t ionofh~ = h  2 + k 2 + 
t 2 for several L values. (1 1 1 ) - ( 2 2 2 )  peak couple. Cu 
sample cold-worked at room temperature. Plot obtained 
by automatic procedure, 

(1 1 1)-(222)  lines, and for samples deformed 
at room temperature. Fig. 6 shows the APF(L) 
versus L curve, deduced from the zero intercepts 
of the lines in Fig. 5. Two values of Deff are 
shown here, 170 and 185A, the smaller being 
derived taking into account the hook effect. 
Analogous plots were derived for the ( 2 0 0 ) -  
(4 0 0) lines for both copper filings. 

Table I summarizes the results obtained for the 
effective crystallite size D ~  (h k 1) in comparison 
with those reported by other authors. From the 
values of Deff (1 1 1) and Def t (1 0 0) the fault pro- 
babilities (1.5 a +/3) were deduced by applying 
Equation 8, taking/511 i '~/51 oo. The last colum 
of Table I gives these values. Table II summarizes 
the results obtained for the values (e20A) 1/~ com- 
puted along the two directions [1 1 1] and [1 00] .  
In Table I it is worth noting that effective particle 
size decreases for both the crystallographic di- 
rections [1 1 1] and [1 00] as the cold working 
temperature decreases from room temperature to 
liquid nitrogen temperature. On the contrary, the 
ratio De~f(1 t 1)/Dell(100) is nearly constant, 
very similar to published values and not too far 
from the already discussed limit value (2.31). 
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Figure 6 APF(L)  versus L plot for the (1 1 1 ) - ( 2 2  2) 
peak couple. Sample cold-worked at room temperature. 
The lowest value was obtained by taking into account the 
"hook"  effect. Plot obtained by automatic procedure. 
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TABLE II R.m.s. microstrains measured on Cu filings applying the present automatic procedure and the Warren- 
Averbach method 

Metal Deformation Measurement (e~0A> 1/2 (e~0A> TM (Ref) <e~0A >1/2 (Ref) (e~0A)1~2 (Ref) Reference 
temperature temperature [1 1 1] [1 00] [1 1 1] [1 00] 

Cu Room Room 0.0022 0.0016 0.0020 0.0029 [10] 
Cu -- 180 ~ C Room 0.0018 0.0017 - - - 

~ 5o ~, 

1oo ~, 

~ 1 5 0  J, 

> 
3 i2 h: 

Figure 7 Ln [1000A (L)] as a function of h2o =h  2 + 
k 2 + l 2 for several L values. (1 1 1)-(2 2 2) peak couple. 
Cu sample cold-worked at room temperature. Plot ob- 
tained by graphical recording and off-line data com- 
putation: 

This result can be explained by the fact that, 
/)1 1 1 and /)1 o'o being taken as equal, the ob- 
served anisotropy must be attributed mainly to the 
presence of  stacking faults. It also explains the 
high values found for (1.5 a +/~). 

Figs. 7 and 8 show the plots corresponding to 
those of  Figs. 5 and 6, deduced from the same dif- 
fraction lines, but obtained graphically instead of  
from an automatic recording. In this case the A (L) 
versus L curve has strong superimposed ripples, 
due to poor measuring accuracy, mainly on the 
tails of  the line. Similar results were obtained for 
al} observed peaks. It is worth noting that, due to 
the presence of  the "hook effect", it is not  
possible to compute automatically the derivative 
present in Equation 11. Therefore we had to 
correct for this effect graphically, as shown in 
Figs. 6 and 8. 

Fig. 9 shows the low-speed diffraction patterns 
of  the three CdS samples. Due to preferred orien- 
tation in thin films patterns, the (1 0 0) and (1 0 1) 
lines disappear. The analysis of  the (0 0 2) line 
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Figure 8 APF(L) versus L plot for the (1 1 1)-(222) 
peak couple. Sample cold-worked at room temperature. 
The lowest value was obtained by taking into account the 
"hook" effect. Plot obtained by graphical recording and 
off-line data computation. 

profde, automatically stepped, has led to the 
results shown in Fig. 10, where the A (L)versus L 
plots are shown for both CdS thin s From 
these plots the minimum Def f values have been 
derived, as shown in Figs. 10 and 11. These are 
in good agreement with those obtained by a least 
squares fit. 

Fig. 11 shows A PF (L) versus L curves deduced 
from Equation 13, where we introduced the values 
of  (e~) computed via a least squares fit. 

The De~ ~ particle diameters obtained from the 
A PF (L) versus L plots are given in the last column 
of  Table III, while the Deaf values obtained by a 
least squares method are given in the third 
column. The agreement between the corresponding 
values is very good. The second column shows the 

minimum Deff sizes computed without considering 
microstrain effects. The values of  (e~), averaged 
over L, are given in the fourth column of  Table III. 
It is clear, from the data of  Table III, that even a 
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Figure 10 A (L) versus L plots for both CdS thin films ex- 
amined, from which the minimum Def f values can be 
calculated, as shown. 

~ ---I ~ "--I ~ - ' - I  "---I 

30 23 

�9 m, | i 

30 23 

(C)  

28 

Figure 9 Low speed diffraction patterns of CdS samples. 
(A) Reference powder sample. (B) Thin ffflm annealed at 
500 ~ C for 1 h. (C) Non-treated thin film. 
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Figure 11 A PF (L) versus L plots for both CdS thin films 
examined, deduced from Equation 13, introducing <eL) 2 
computed by a least squares method. 
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TABLE III Minimum effective particle sizes, effective particle sizes and microstrains for both the CdS thin films 
examined 

Sample Deff (min); Deff; value (e 2)112 computed Range used Def f obtained from 
minimum value computed by least by least squares for the least the A PF(L) versus L 
computed by squares method method squares fit plot 
W.A. method 
(A) (A) CA) (A) 

CdS 
non-treated 
thin film 
CdS 
thin film 
annealed at 
500 ~ C for 1 h 

85 120 0.0073 5-85 125 

120 145 0.0055 10-120 155 

short annealing has greatly improved the crystal- 

linity of  the CdS thin film, both increasing the 

coherent diffraction domain sizes and decreasing 

the average microstrain value; which is pro- 

portional to the dislocations density. 
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